
  

 Doctoral School on Engineering Sciences 
 Università Politecnica delle Marche 
  

  

Extended summary 
 

Formal Methods for Semantic Case Management 

Curriculum in Ingegneria Informatica, Gestionale e dell’Automazione 

 

Author 

Lorenzo Boaro 

Tutor 

Prof. Luca Spalazzi 

 

Date: 30-01-2013 

  
 

_______________________________________________________________________________________________________________ 

 
Abstract. During the years Business Process Management (BPM) has emerged as the go-to approach 
for handling routine work. As a result, business processes can be structured and therefore automat-
ed since characterized by a certain level of repeatability. Case Management (CM) and, more recently, 
Adaptive Case Management (ACM) were coined for more dynamic approaches taking into account 
knowledge work. Unlike the first, CM and ACM fit in managing processes characterized by a certain 
degree of uncertainty. Even if the principles of scientific management propose a clear distinction 
between routine and knowledge work, organizations cannot do the same. Almost all work that 
people do consists of routine work and non-routine work. 

Based on previous considerations we propose a theoretical systematization of the aspects in-
volved to represent knowledge-intensive processes. The overall goal is to integrate BPM and CM as-
pects and formalize, through behavioral and semantic technologies, each element taking part in 
the design and the execution of business processes. Each process is described through a new 
modeling language. Starting from a model, we provide its operational semantics. The result con-
sists into parametric and annotated state-based systems. Formal methods based on Model Checking 
techniques can be applied to introduce verification and selection functionalities both at design-time 
and run-time. 



  

 Doctoral School on Engineering Sciences 
 Università Politecnica delle Marche 
  

  

Keywords. business process management, case management, formal methods, semantic annota-
tions, modeling language 

 
 
 
 
 
 



 Lorenzo Boaro 
Formal Methods for Semantic Case Management 

 Doctoral School on Engineering Sciences 1   

1 Problem statement and objectives 

As a methodology, Business Process Management (BPM) involves a large effort to identify the 
structure of business processes which can be instantiated and executed through traditional 
process automation. For routine work this approach works well. Routine work is well known 
and can be planned to some level of details. Due to its repeatability, processes are structured 
and, thus, can be automated [1]. 
Nowadays organizations are dealing with trends that increase the complexity of their busi-
ness. Routine work is less and less common for many organizations. Its opposite is called 
knowledge work and does not have the same level of predictability. Knowledge work intro-
duces unstructured processes. Such processes are called knowledge-intensive processes since there 
is no predefined view of the process and tasks are discovered during their execution [2]. 
Obviously it is not possible to make a clear distinction between routine and knowledge 
work. Almost all work that people do consists of predictable phases mixed together with 
non-routine ones. In this scenario, Case Management (CM) and, more recently, Adaptive Case 
Management (ACM) were coined for more dynamic and rule-oriented approaches. 
While BPM has received broad attention in the scientific community and numerous for-
malisms have been provided to describe structured processes (see [3], [4], [5], [6]), engineer-
ing of knowledge-intensive processes is far from being mastered. Only few approaches 
have been taken into consideration (see [7], [8], [9]). Providing formalisms for describing 
processes characterized by an unpredictable nature can lead to different advantages. In par-
ticular, formal methods can be applied to support workers during their tasks. Benefits can 
be obtained both during the modeling of the process (design-time phase) and its execution 
(run-time phase). Side effects consist in enabling efficient and quality-improved processes in 
environments where work cannot be determined a priori. 

Continuing to be mere repositories of information, systems do not have capabilities to 
interpret information and do not allow people to get the data they need to work and to rea-
son. In the overall scenario current problems consist of terminology mismatch and un-
structured and isolated knowledge representation processes. Semantic aspects can be used 
to specify processes more precisely. Furthermore, interoperability problems can arise. In 
environments where collaboration among different actors is required, disambiguation of 
terms becomes a main aspect, specially whereas a huge space is present and schema for 
documenting model or terms are absent. 

The aim of this work is to provide a theoretical framework for describing structured and 
unstructured processes. Such processes cannot be completely determined in advance since 
characterized on both routine and knowledge work. In particular, we focus on the possibil-
ity to model and execute what we have called hybrid processes. Users are free to perform ac-
tivities as they prefer, but, at the same time, they can automate tasks when the latter are 
characterized by a predefined flow. Furthermore, semantic annotations permit to specify mod-
el elements in a more accurate manner and improve the collaboration among different ac-
tors. 

2 Research planning and activities 

Modeling can lead to advantages to organizations but, in general, work cannot be exactly 
identified. Routine work and knowledge work cannot be completely separated and, hence, 
processes can vary from a predefined structure to an undefined one. In addition, users are 



 Lorenzo Boaro 
Formal Methods for Semantic Case Management 

 Doctoral School on Engineering Sciences 2   

not simple performers of some types of tasks. They are knowledge workers [10] and, as such, 
they operate through expertise. 

Based on previous considerations, we define a new modeling language, based on Business 
Process Modeling Notation (BPMN) [11], as the starting point to create a model of the “to-be” 
process, i.e. a case. Starting from a model, we translate the case into a parametric state-based 
system. Such a formalism makes possible to verify correctness properties of systems. Fur-
thermore, cases are enriched by semantic annotations. Using ontologies, it is possible to de-
scribe elements and improve the collaboration. 

The need to introduce formal methods has two main objectives. On the one hand, the 
introduction of an operational semantics allows to describe in a detailed manner the behav-
ior of the elements that belong to the modeling notation - this in order to run cases in ad 
hoc execution engines. On the other hand, the formal development of a correct algorithm 
based on Model Checking techniques allows to apply verification and selection mechanisms - 
this in order to support users during their tasks. 

2.1 Theoretical Background 

The goal of this section is to provide a theoretical background that describes the basis of 
our work. 

2.1.1 Ontology Representation 

An ontology can be represented by means of Description Logic (DL) [12], a family of formal 
languages. The main operators are defined below. 
 
Definition 1 Let A be a concept name. Let R be a role name. Let a be an individual name. Let C 
be a concept. Then: 
 
− A Concept is defined as follows: C :: = A | ⊤ | ⊥ | C ⊓ C | C ⊔ C | ∀ R.C 
− A tbox (Terminology) Statement is defined as follows: ρ :: = C ⊑ C 
− An abox (Assertional ) Statement (or assertion) is defined as follows: p :: = a : C | a.R = a 
 
Each DL language is composed of the following symbols: concept names, role names, and indi-
vidual names (or individuals). It also includes a set of constructors that permit the formation 
of concepts. A concept-based knowledge base is formed by two components: tbox (a set of con-
cepts) and abox (a set of facts). While the former describes the ontology, the latter may rep-
resent the data of a knowledge base. We also introduce the notion of query as follows. 
 
Definition 2 Let C be a concept. Let R be a role name. Let a be an individual. Let x (and y) be a 
variable. Then: 
 
− x : C, x.R = a, or a.R = x (resp. x.R = y) 
 
It denotes all the individuals such that, substituted for x (resp., all the pairs of individuals 
such that substituted for (x,y)), they make true the corresponding assertions. 

2.1.2 Case Representation 

Let us introduce the notion of annotated case system extending the definitions provided in [13] 
and [14]. 
 



 Lorenzo Boaro 
Formal Methods for Semantic Case Management 

 Doctoral School on Engineering Sciences 3   

Definition 3 An annotated case system U over a Description Logic language L is defined as 
〈 {ΣA

i | i ∈ I}, T, AT 〉  where: 
 
− ΣA

i is a finite set of parametric and annotated transition system definitions; 
− T is the terminology (tbox) of the annotation;  
− AT is the set of all the concept and role assertions defined over  T.  
 
An annotated case system is composed by a set of annotated case definitions. 
 
Definition 4 An annotated case ΣA

i defined over a Description Logic language L is a tuple 〈 n, 
Si, Si

0, Gi, Ri, Λi 〉  where: 
 
− Si is the finite set of states of ΣA

i; 
− Si

0 ⊆  S is the set of initial states of ΣA
i; 

− Gi = {gi, ...} is a set of guards used to label transitions of ΣA
i; 

− Ri ⊆  Si × Gi × Si is the transition relation; 
− Λi : Si → 2AT is the annotation function.  
 
Intuitively, a guard can be an assertion or a conjunctive query. For each state, the Λ func-
tion enumerates all its assertions. 

2.1.3 Specification Representation 

Verification requirements enable to express conditions on annotated case systems. Extend-
ing the work presented in [13], correctness properties are expressed using Annotated Indexed-
CTL∗\X. 
 
Definition 5 Let AT a set of assertions. Let p a concept or role assertion. Let CQ be a set 
of conjunctive queries over T. Let q a conjunctive query. Let I be a set of possible indexes. 
Then, an Annotated Indexed-CTL∗\X formula can be defined as: 
 
− φ(i) :: = p(i) | q(i)[x] | φ(i) ⋀ φ(i) | ¬φ(i) | φ(i) U φ(i) 
− Φ(i) :: = Aφ(i) | Eφ(i) | ⋀i Aφ(i) | ⋀i Eφ(i) 
 
Intuitively, φ(i) defines the set of so-called state-formulas while Φ(i) constitute the set of 
path-formulas. Both contain at least an atomic proposition indexed by i. In the following, 
formulas without path quantifiers (A and E) form Indexed-LTL\X, a subset of Annotated In-
dexed-CTL∗\X. 

2.1.4 Verification Algorithm 

Model Checking can be undecidable due to both semantic annotations and parametric as-
pects. In a specification, annotations may denote a infinite set of individuals. On the other 
hand, automated methods to permit verification for arbitrary size systems it is undecidable 
in general. As a consequence, the algorithm, under the closed world assumption, first performs 
a procedure where annotations are “lowered” to a purely syntactic form. Then, using re-
sults presented in [13], it reduces Model Checking problem for systems for a small cutoff 
size c. 



 Lorenzo Boaro 
Formal Methods for Semantic Case Management 

 Doctoral School on Engineering Sciences 4   

 
Figure 1. Framework overview 

The main elements are described below: 
 
− Temporal specification normalization: it translates the temporal specification into its positive 

normal form. 
− Relation building: it considers all the queries, both in the temporal specification and in the 

guards of an annotated case system. Two different tables composed by positive and neg-
ative assertions are obtained. 

− Process grounding: it substitutes the guards with disjunctions (or conjunctions) of states 
(that belong to other instances) where those guards hold. For each valid assignment, a 
different parametric state transition system is obtained. 

− Temporal specification grounding: it substitutes the conjunctive queries that belong to the 
temporal specification with disjunctions of states where the queries hold. For each valid 
assignment, a different specification is obtained. 

− Propositional model checking: it applies the propositional temporal logic model checking al-
gorithm to a finite number of relatively small systems to which cutoff has been applied. 

2.2 Tools 

This section is devoted to provide an overview of the tools our theoretical framework 
makes available. 

2.2.1 Framework 

As depicted in Figure 1, it is possible to distinguish two main components: the designer and 
the performer. The former is used by the user who creates the model of the “to-be” process. 
The latter, instead, runs when the model is deployed and, hence, executed. They rely on a 
shared ontology which is adopted both in the design and the execution of a case process. 

2.2.2 Modeling Language 

The design phase is achieved by means of a new modeling language which captures the 
static aspects of a case process. As illustrated in Figure 2, the language provides few graph-
ical elements that can be enriched through semantic annotations. In particular, it is possible 
to distinguish between nodes and connectors. A node can be an Event, an Activity, a Case or  
an Artifact. An event describes something that happens during the execution. An activity 
represents an atomic task. A case acts as a container of node definitions. Finally, an artifact 
defines data objects. Nodes can be linked together through connectors. A connector can be  



 Lorenzo Boaro 
Formal Methods for Semantic Case Management 

 Doctoral School on Engineering Sciences 5   

 
Figure 2. Modeling notation 

of type Dependency or Sequence. While the former links a node with an artifact, the latter ena-
bles the connection between two nodes. A sequence definition is further classified in Man-
datory Sequence, Optional Sequence and Simple Sequence. 

The result of the modeling phase consists in an annotated case model diagram: a case model 
enriched by assertions derived from a specific ontology. 

2.2.3 Operational Semantics 

Given an annotated case model diagram, it is then possible to define its operational seman-
tics in terms of an annotated case system. 
An event is denoted by a state and, thus, its annotations become the annotations of the re-
lated state. The same translation applies for activities. Each case behaves as an automaton 
controller for its elements. In particular, transitions among internal elements adopt guards 
that are satisfied when the case has reached its intermediate state. The annotations are 
available in the intermediate state that composes the automaton. A mandatory sequence 
links two different states, where the final state can assume the initial state of an event, an 
activity or a case, and where the start state is an event, an activity or a case. Annotations 
become a guard for that transition. Simply speaking, the guard, if satisfied, enables the tran-
sition to the state at the other part of the relationship. The same applies for optional se-
quences. For a mandatory sequence the transition between the two states must be per-
formed. For an optional sequence the transition could not be completed. A simple 
sequence is denoted by a transition between two states, where the first state can assume the 
final state of an event, an activity or a case. It cannot be annotated. When an artifact has no 
relationships, its annotations become the annotations of each state of the overall system. 
When an artifact is an input for a node, it means its annotations become available as guards 
on the transition that starts on the initial state of that element. When an artifact is an out-
put for a specific element, annotations are included in the final state that belongs to the as-
sociated element. 



 Lorenzo Boaro 
Formal Methods for Semantic Case Management 

 Doctoral School on Engineering Sciences 6   

2.2.4 Support Functionalities 

On top of formal methods we provide two functionalities: verification and selection. Such 
functionalities are available both at design-time and run-time and support users during their 
tasks. 
At design-time, using verification techniques, it is possible to discover problems before the 
design is enacted. In particular, we are able to check the correctness of models against 
dead-activities, conflicts, etc. Selection, instead, enables the reuse and auto-completion of 
process fragments included in ad hoc repositories. 
Concerning run-time phase, the verification mechanism enables to monitor an instance 
during its life-cycle. In particular, for each specific instance, it is possible to track its status 
and verify if it has reached an inconsistent one. Furthermore, it allows to enforce correct 
changes on the executing instance. Concerning selection, it consists in recommending ser-
vices that can be used to fulfill a specific result. This in order to improve intra- and inter-
collaboration. 

3 Analysis and discussion of main results 

The main results presented are original in various aspects. First of all, we defined a formal 
model based on parametric state transition systems enriched by semantic annotations. To-
gether with the introduction of annotated case systems, we also provided an algorithm 
based on Model Checking techniques. Both are completely new and extend previous results 
presented by Emerson and Kahlon in [13] and Di Pietro et al. in [14]. In addition, the pro-
posed algorithm was applied to verification and selection problems both at design-time and 
run-time. This in order to provide functionalities to support users during their tasks. Final-
ly, it is interesting to note that our approach turns out to be one of the few works, together 
with the two proposed by van der Aalst et al. (see [7] and [8]), that provides a systematiza-
tion of the aspects related to BPM and CM. 

The obtained results were applied to a Healthcare scenario. In particular, taking into ac-
count how radiological visits are executed within Hospitals, we validated different aspects 
introduced in our work. 

4 Conclusions 

This work investigated the possibility to integrate BPM and CM features with semantic as-
pects. The idea of merging both approaches is not unknown in the business management 
scenario. Thus, it is possible to represent and execute processes where users require a cer-
tain degree of freedom and can apply their expertise. Whereas it is needed, constraints are 
applied to enforce specific execution flows. Furthermore, semantic annotations accomplish 
to different goals. Assertions are used to express pre- or post-conditions on elements, re-
trieve process fragments, improve interoperability, etc. 

A theoretical systematization for describing annotated case systems has been provided. 
Model Checking enables the verification of case systems against correctness properties ex-
pressed through indexed and annotated temporal specifications. 

On top of the formal discussion, this work offers different tools for describing and exe-
cuting case processes. In particular, introducing a modeling language and support function-
alities, we are able to provide better guidance to users. 



 Lorenzo Boaro 
Formal Methods for Semantic Case Management 

 Doctoral School on Engineering Sciences 7   

References 

[1] S. Kemsley. The changing nature of work: From structured to unstructured, from controlled to social. in 
BPM, 2, 2011. 

[2] C. Di Ciccio, A. Marrella and A. Russo. Knowledge-intensive Processes: An Overview of Contemporary 
Approaches. Knowledge-intensive Business Processes, 33, 2012. 

[3] W. M. P. van der Aalst. Challenges in business process management: Verification of business processing us-
ing petri nets. Bulletin of the EATCS, vol. 80, pp. 174-199, 2003. 

[4] J. Koehler, G. Tirenni and S. Kumaran. From business process model to consistent implementation: A 
case for formal verification methods. In EDOC, pp. 96-, 2002. 

[5] J. Zhang and H. Wang. A pi-calculus-based business process formal design method. Lectures Notes in 
Computer Science, pp. 347-356, 2007. 

[6] J. C. van Grondelle and M. Gülpers. Specifying flexible business processes using pre and post conditions. 
In PoEM, pp. 38-51, 2011. 

[7] W. M. P. van der Aalst, M. Weske and D. Grünbauer. Case handling: a new paradigm for business 
process support. Data Knowl. Eng., vol. 53, no. 2, pp. 129-162, 2005. 

[8] W. M. P. van der Aalst, M. Pesic and H. Schonenberg. Declarative workflows: Balancing between 
flexibility and support. Computer Science - R&D, vol. 23, no. 2, pp. 99-113, 2009. 

[9] K. Kaan and Dr. W. Van Erde. Modeling support for the case management paradigm and expectations 
management in process innovation. 2005. 

[10] P. F. Drucker. Landmarks of Tomorrow: A Report on the New Post-Modern World. New York: Har-
per Colophon Books, 1959. 

[11] OMG. Business process model and notation. http://www.omg.org/spec/BPMN/2.0/2011, 2011. 
[12] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi and P.F. Patel-Scheneider. The Description 

Logic Handbook: Theory Implementation, and Applications. Cambridge University Press, 2003. 
[13] E. A. Emerson and V. Kahlon. Reducing model checking of the many to the few. in In 17th Interna-

tional Conference on Automated Deduction (CADE-17), pp. 236-255, 2000. 
[14] I. Di Pietro, F. Pagliarecci and L. Spalazzi. Model Checking Semantically Annotated Services. Soft-

ware Engineering, IEEE Transactions on, vol. 38, no. 3, pp. 592-608, 2012. 


